
Operating Systems 2016/17
Solutions for Assignment 2

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

T-Question 2.1: Anatomy of a Program

Consider the following C program that does some random computations. Refer to
the introductory C slides provided with the lecture in ILIAS if you need help with
some of the keywords (e.g., const or static). Download the source code of the pro-
gram from ILIAS and build it using gcc with the following command line:
gcc -g main.c func.c -o out

You should now have an executable file called out.

main.c:

#include <stdlib.h>
#include ”func.h”

int main()
{

int ∗parg, result;

parg = (int∗)malloc(sizeof(int));
if (parg == NULL) exit(1);
∗parg = 10;

result = func(parg);
free(parg);

return result;
}

func.h:

int func(int ∗parg);

func.c:

const int a = 42;
int b = 1;

int func(int ∗parg)
{

static int s = 0;
int r;

if (s == 0) {
r = ∗parg + a;
s = 1;

} else {
r = ∗parg + b;
b++;

}

return r;
}

a. In which segments of the executable are a, b, s, and func stored? Use the com-
mand readelf -hSs out to verify your solution. Locate each object in the symbol
table (.symtab) and match the section index given in the Ndx column with the sec-
tion headers. Hint: The compiler may renamed s to s.n with n being some decimal
number to prevent name clashes. 2 T-pt

Solution:
a: .rodata Read-only Data Segment
b: .data Data Segment
s: .bss Block Started by Symbol Segment (because we initialized it to zero!)
func: .text Code Segment

1



b. In which address space segments do r and *parg reside, when executing the pro-
gram? 1 T-pt

Solution:
r: Stack
*parg: Heap

c. Where is the return value of func() placed? Verify you solution by disassembling
the executable with objdump -Sd out and finding the epilogue of func(). 1 T-pt

Solution:
Disassembly of the return statement in func:

return r;
40065c: 8b 45 fc mov -0x4(rbp),eax ; move (r) from stack to eax
40065f: 5d pop rbp
400660: c3 retq

The return value is placed in the eax register.

d. What shared libraries are needed by out? Use the tool ldd to list all library depen-
dencies. What purpose does each of the libraries serve? 3 T-pt

Solution:
On an Ubuntu 14.04 (64-bit) the following dependencies exist:

linux-vdso.so.1 Kernel provided shared library (virtual dynamic shared object) that
contains system helper routines such as a way for the C library to perform sys-
tem calls in a platform-independent manner.

/lib/x86 64-linux-gnu/libc.so.6 64-bit C standard library. Contains, besides others,
the malloc() and free() functions.

/lib64/ld-linux-x86-64.so.2 64-bit ELF dynamic linker/loader. Responsible for re-
solving library dependencies, loading them into the address space of the process
and performing the dynamic linking.

T-Question 2.2: Processes

a. What is the difference between a program and a process? 1 T-pt

Solution:

Program: Passive entity, just a file on disk

Process: Active entity, has an execution context (instruction pointer, resources, . . . )

b. When a process exits, it may become a zombie. What is a zombie and what needs
to be done for this not to happen? 1 T-pt

Solution:
When a child-process terminates the parent may want to know the child’s exit sta-
tus. To make this possible a stub of the child will stay in the process table after
termination as a zombie. The parent needs to collect the exit status of the terminated
processes with the wait() or waitpid() system calls to free the zombies.

2



c. Process A creates process B which in turn creates process C. In a Linux system:
What is C’s parent after B was killed? 1 T-pt

Solution:
The init process (PID 1) adopts C.

d. What is the context of a process? Name at least 4 properties. 2 T-pt

Solution:
The context is made up of properties which identify the current runtime state of a
process. Some examples are:

• General purpose registers, Instruction Pointer, Stack pointer

• Process State

• Process Priority

• Unique Process ID

• Open files

• Network connections

• Security credentials
Total:
12T-pt

3


